Graded Lagrangian Submanifolds
نویسنده
چکیده
Floer theory assigns, in favourable circumstances, an abelian group HF (L0, L1) to a pair (L0, L1) of Lagrangian submanifolds of a symplectic manifold (M,ω). This group is a qualitative invariant, which remains unchanged under suitable deformations of L0 or L1. Following Floer [7] one can equip HF (L0, L1) with a canonical relative Z/N -grading, where 1 ≤ N ≤ ∞ is a number which depends on (M,ω), L0 and L1 (for N = ∞ we set Z/N = Z). Relative mostly means that the grading is unique up to an overall shift, although there are also cases with more complicated behaviour. In this paper we take a different approach to the grading: we consider Lagrangian submanifolds equipped with certain extra structure (these are what we call graded Lagrangian submanifolds). This extra structure removes the ambiguity and defines an absolute Z/N -grading on Floer cohomology. There is also a parallel notion of graded symplectic automorphism, which bears the same relation to the corresponding version of Floer theory. Both concepts were first discovered by Kontsevich, at least for N = ∞; see [13, p. 134]. Somewhat later, the present author came upon them independently.
منابع مشابه
Isotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملHarmonic Lagrangian submanifolds and fibrations in Kähler manifolds
In this paper we introduce harmonic Lagrangian submanifolds in general Kähler manifolds, which generalize special Lagrangian submanifolds in Calabi-Yau manifolds. We will use the deformation theory of harmonic Lagrangian submanifolds in Kähler manifolds to construct minimal Lagrangian torus in certain Kähler-Einstein manifolds with negative first Chern class.
متن کاملGraded Lagrangians, exotic topological D-branes and enhanced triangulated categories
I point out that (BPS saturated) A-type D-branes in superstring compactification on Calabi-Yau threefolds correspond to graded special Lagrangian submanifolds, a particular case of the graded Lagrangian submanifolds considered by M. Kontsevich and P. Seidel. Combining this with the categorical formulation of cubic string field theory in the presence of D-branes, I consider a collection of topol...
متن کاملComplex Extensors and Lagrangian Submanifolds in Complex Euclidean Spaces
Lagrangian //-umbilical submanifolds are the "simplest" Lagrangian submanifolds next to totally geodesic ones in complex-space-forms. The class of Lagrangian //-umbilical submanifolds in complex Euclidean spaces includes Whitney's spheres and Lagrangian pseudo-spheres. For each submanifold M of Euclidean «-space and each unit speed curve F in the complex plane, we introduce the notion of the co...
متن کاملMinimal Lagrangian submanifolds in the complex hyperbolic space
In this paper we construct new examples of minimal Lagrangian submanifolds in the complex hyperbolic space with large symmetry groups, obtaining three 1-parameter families with cohomogeneity one. We characterize them as the only minimal Lagrangian submanifolds in CHn foliated by umbilical hypersurfaces of Lagrangian subspaces RHn of CHn. Several suitable generalizations of the above constructio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008